PROBABILITY THEORY

Joint probability, conditional probability and Bayes' theorem

Consider two events: A and B.
Let $p(A)$ be the probability of the event A and $p(B)$ the probability of event B.
The joint probability is $p(A, B)$ or $p(A \cap B)$. That is $p(A, B)$ is the probability that the two events will occur together. Obviously $p(A, B)=p(B, A)$.
If A and B are independent the probability of both occurring is: $p(A, B)=p(A) p(B)$.
If A and B are dependent the outcome or occurrence of the first affects the outcome or occurrence of the second, so $p(A, B)=p(A \mid B) p(B)$.
$p(A \mid B)$ is the the conditional probability of an event A in relationship to an event B. This is the probability that event A occurs given that event B has already occurred; in other words $p(A \mid B)$ is the probability of event A given B.
If the events are independent: $p(A \mid B)=p(A)$.
The probability that at least one of them will occur is given by:
$p(A \cup B)=p(A)+p(B)-p(A \cap B)$.

Bayes' theorem

Let $p(A)$ and $p(B)$ be the probabilities of A and B without regard to each other.
$p(A \mid B)$ is the conditional probability; that is the probability of observing event A given that B is true.
$p(B \mid A)$ is the probability of observing event B given that A is true.
So, $p(A \mid B) p(B)=p(B \mid A) p(A)$.

Example n. 1

Calculate the occurrence of an odd number when a die is rolled.
$p(A)=3 / 6=1 / 2$.

Example n. 2

A coin is tossed and a die is rolled. Calculate the probability of landing on the head side of the coin and rolling a three on the die.
$A=$ head on the coin. $p(A)=1 / 2$.
$B=$ three on the die. $p(B)=1 / 6$.
The two events are independent. So, $p(A, B)=p(A) p(B)=1 / 2 * 1 / 6=1 / 12$.

Example n. 3

A card is chosen at random from a deck of 52 cards. It is then replaced and a second card is chosen. What is the probability of choosing a jack and then a queen?
$A=a$ jack on the first pick. $p(A)=4 / 52=1 / 13$.
$B=$ a queen on the second pick. $p(B)=4 / 52=1 / 13$.
The two events are independent. So, $p(A, B)=p(A) p(B)=1 / 13^{*} 1 / 13=1 / 169$.

Example n. 4

A card is chosen at random from a deck of 52 cards. Without replacing it, a second card is chosen. What is the probability of choosing an ace and then a king?
$A=a n$ ace on the first pick. $p(A)=4 / 52=1 / 13$.
$B=a$ king on the second pick.
$p(B \mid A)=$ the probability of a king on $2^{\text {nd }}$ pick given an ace on $1^{\text {st }}$ pick $=4 / 51$.
The two events are dependent. So, in this case $p(A, B)=p(B \mid A) p(A)=4 / 51^{*} 1 / 13=4 / 663$.

Example n. 5

Three cards are chosen at random from a deck of 52 cards without replacement. What is the probability of choosing 3 aces?
$A=$ an ace on the first pick. $p(A)=4 / 52$.
$B=$ an ace on the second pick. $p(B \mid A)=3 / 51$.
$C=$ an ace on the third pick. $p(C \mid A, B)=2 / 50$.
The events are dependent.
$p(A, B, C)=p(C \mid A, B) p(A, B)=p(C \mid A, B) p(B \mid A) p(A)=2 / 50^{*} 3 / 51 * 4 / 52=25 / 132600=1 / 5525$.

Example n. 6

In a school 70\% of schoolboys like Chocolate, and 35% like Chocolate AND like Strawberry. What percent of those who like Chocolate also like Strawberry?
$P($ Strawberry \mid Chocolate $)=P($ Chocolate and Strawberry $) / P($ Chocolate $)=0.35 / 0.7=0.5$

So 50% of schoolboys who like Chocolate also like Strawberry.

Example n. 7

Consider two urns. The urn A contains 3 white balls and 5 blue balls. The urn B contains 4 white balls and 4 blue balls. A coin is flipped: if it is Heads, a ball is drawn from the urn A, and if it is Tails, a ball is drawn from the urn B. What is the probability that a white ball was taken from the urn B ?

Let A be the event that the coin flip was Head (the urn A is chosen), so $p(A)=1 / 2$.
Let B be the event that the coin flip was Tails (the urn B is chosen), so $p(B)=1 / 2$.
Let W be the event that a white ball is selected, in general.
From the given data, we know that:
$p(W \mid A)=3 / 8$ (a white ball from urn A) and $p(W \mid B)=4 / 8$ (a white ball from urn B).
We need to compute $p(B \mid W)$; so we can use the Bayes' Theorem.
$p(B \mid W)=p(B, W) / p(W)$
where $p(B, W)=p(W, B)=p(W \mid B) p(B)=4 / 8^{*} 1 / 2=1 / 4$
and $p(W)=p(W, A)+p(W, B)=p(W \mid A) p(A)+p(W \mid B) p(B)=\left(3 / 8^{*} 1 / 2\right)+\left(4 / 8^{*} 1 / 2\right)=3 / 16+1 / 4$ $=7 / 16$

Finally, $p(B \mid W)=p(B, W) / p(W)=(1 / 4) /(7 / 16)=16 / 28=4 / 7$.

